Updates On SGL2 Inhibitors In CKD

Farahnaz Dadras ,MD Iran University Of Medical Sciences

Mechanism of renal glucose transport in proximal tubule

Mechanisms of renal glucose transport in the proximal tubule

John F

•

MAYO CLINIC

76

IPNA

IS

International Society of Rephrology Iranian Society of Nephrol

De Fronzo et al. Nat Rev Nephrol 2017;1:11

WILEY

SUPPLEMENTARY ARTICLE

A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors

Emily Brown | Surya P. Rajeev | Daniel J. Cuthbertson | John P. H. Wilding D

• Diabetes Obes Metab. 2019;21(Suppl. 2):9–18.

SGL2i AND THEIR CLINICAL EFFECTS

- SGL2 inhibition results in 70 to90 g of UGE
- Energy loss of about 300 kcal/d.
- SGL2i reduce blood glucose & HbA1c between
 0.6% to 1%
- Weight loss of around 2 to 3 kg is expected
- Modest reduction in blood pressure(2-3mmHg of systolic BP).

Emily Brown, et al . Diabetes Obes Metab. 2019;21(Suppl. 2):9–18.

Effects on energy balance

- The glucosuria and osmotic diuresis reduce glycaemia and body weight.
- The reduction in steatosis, visceral and subcutaneous adipose tissue accounts for the late effects on bodyweight.

Emily Brown, et al. Diabetes Obes Metab. 2019;21(Suppl. 2):9–18

The reduction in insulin levels secondary to SGLT2 inhibition also results in lipolysis and an increase in circulating free fatty acids (FFA).

- This influx of FFA is directed into ketogenesis
- in the liver resulting in production of ketone
- bodies which is taken up by most tissues including heart.
- This has been postulated one of the reasons for the cardio protective effect of SGLT2i.
- Marc Evans. Diabetes Ther (2019) 10:1719–1731

Research Paper

SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice

Liang Xu^a, Naoto Nagata^a, Mayumi Nagashimada^a, Fen Zhuge^a, Yinhua Ni^a, Guanliang Chen^a, Eric Mayoux^b, Shuichi Kaneko^c, Tsuguhito Ota^{a,c,*}

^a Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan

^b Boehringer-Ingelheim, Cardio-metabolic Diseases Research, Biberach, Germany

^c Department of System Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan

CrossMark

- More recently, skin sodium content has been closely associated with left ventricular mass and systolic blood pressure.
- With 23Na-magnetic resonance imagingstudies suggest
- that the skin may act as a **buffer** for excessive sodium intake.
- Treatment with dapagliflozin was shown to decrease
- the sodium content of the skin by 5.8% in one study.
- Schneider MP, et al. Skin sodium concentration correlates
- with left ventricular hypertrophy in CKD. J Am Soc Nephrol.
 - 2017;28:1867-1876

Fig. 3 SGLT2 inhibitor cardiorenal protection mechanistic overview. SBP systolic blood pressure

• Marc Evans. Diabetes Ther (2019) 10:1719–1731

Renoprotective pathways

SGLT2 inhibition is consistently associated with an acute, dose-dependent reduction in eGFR by~5 mL/min/1.73 m2 and ~30% to 40% reduction in albuminuria and hyperfiltration.

- As CKD progresses, increases in intraglomerular pressure
- are associated with glomerular fibrosis and inflammation.
- SGL2 inhibition reduce oxygen-consuming workload of reabsorption, with possible improvements tubulointerstitial cell structure and even function.

 Increased EPO may be a sign of tubulointerstitial recovery after treatment with SGLT2i.

Kluger et al. Cardiovasc Diabetol (2019) 18:99 https://doi.org/10.1186/s12933-019-0903-4

Cardiovascular Diabetology

REVIEW

Class effects of SGLT2 inhibitors on cardiorenal outcomes

Aaron Y. Kluger^{1,2*}, Kristen M. Tecson^{1,2,3}, Andy Y. Lee^{4,5}, Edgar V. Lerma⁶, Janani Rangaswami^{7,8}, Norman E. Lepor^{9,10}, Michael E. Cobble¹¹ and Peter A. McCullough^{1,3,4,5}

Open Access

- Three SGL2 inhibitors have been studied in cardiovascular outcome trials(CVOTs).
- EMPA-REG OUTCOME
- CANVAS and CANVAS_R
- DECLARE-TIMI 58
- CREDENCE

Fig. 1 Baseline estimated glomerular filtration rates (eGFRs) and prior cardiovascular disease (CVD) rates in the Dapagliflozin Effect on CardiovascuLAR Events (DECLARE-TIMI 58), CANagliflozin CardioVascular Assessment Study (CANVAS) Program, Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients–Removing Excess Glucose (EMPA–REG OUTCOME), and Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trials. Prior CVD displayed as incidence (percentage)

• Kluger et al. Cardiovasc Diabetol (2019) 18:99

Fig. 2 Heart failure hospitalization (HHF), HHF and cardiovascular (CV) death, and major adverse cardiovascular event (MACE) event rates per 1000 patients in the Dapagliflozin Effect on CardiovascuLAR Events (DECLARE-TIMI 58), CANagliflozin CardioVascular Assessment Study (CANVAS) Program, Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients–Removing Excess Glucose (EMPA–REG OUTCOME), and Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trials. Statistical outcomes displayed as hazard ratio, 95% confidence interval, p-value. *HR* hazard ratio, *DAPA* dapagliflozin, *CANA* canagliflozin, *EMPA* empagliflozin, *PLB* placebo

Kluger et al. Cardiovasc Diabetol (2019) 18:99

Composite Renal Outcomes

Kluger et al. Cardiovasc Diabetol (2019) 18:99

Baseline Renal Characteristics

	Canagliflozin (n = 2202)	Placebo (n = 2199)	Total (N = 4401)
Mean eGFR, mL/min/1.73 m ²	56	56	56
eGFR ≥90, %	5	5	5
eGFR ≥60 to <90, %	36	35	35
eGFR ≥45 to <60, %	29	29	29
eGFR ≥30 to <45, %	27	27	27
eGFR <30, %	4	4	4
Median UACR (IQR), mg/g	923 (459-1794)	931 (473-1868)	927 (463-1833)
UACR <30, %	<1	<1	<1
UACR 30-300, %	11	11	11
UACR >300-≤3000, %	77	76	77
UACR >3000, %	11	12	11

	DECLARE- TIMI 58	CANVAS	EMPA-REG OUTCOME	CREDENCE
Male genital infection ^a	+ ^b	+ ^b	+ ^b	+ ^b
Female genital infection ^a		+ ^b	+ ^b	+
Any AE	N/A	N/A	_b	_b
Serious AE	_b	_b	_b	_b
AE causing discon- tinuation	+ ^b	+	_b	N/A
Hypoglycemia	_ ^b	+	_	_
UTI	_	+	_	+
Fracture	+	+ ^b	_	_
Hyperkalemia	N/A	+	N/A	_
Amputation	+	+ ^b	N/A	+
AKI	_b	_	_b	_
Breast cancer	0	+	N/A	+
Bladder cancer	_ ^b	_	N/A	+
DKA	+ ^b	+	+	+ ^b

AE adverse event, N/A not available, UTI urinary tract infection, AKI acute kidney injury, DKA diabetic ketoacidosis

- ^a DECLARE-TIMI 58 did not differentiate genital infection by sex
- ^b indicates statistical significance at the $\alpha = 0.05$ level. "+" = increased risk,
- "-"=decreased risk, "0"=no difference in risk

• Kluger et al. Cardiovasc Diabetol (2019) 18:99

Primary Aim of the CREDENCE Trial

To assess the effects of the SGLT2 inhibitor, canagliflozin, on clinically important renal outcomes in people with T2DM and established CKD

Primary Outcome. ESKD, Doubling of Serum Creatinine, or **Renal or CV Death**

I Society of Nephrology

International Congress of Nephrology, Dialysis, and Transplantation

IPNA

nal Society of Nephrology

International Congress of Nephrology, Dialysis, and Transplantation

Effects on eGFR

Summary of Key Renal and CV Outcomes

	(95% CI)		P value
Primary composite outcome	+- +	0.70 (0.59–0.82)	0.00001
Doubling of serum creatinine	 -	0.60 (0.48–0.76)	<0.001
ESKD		0.68 (0.54–0.86)	0.002
eGFR <15 mL/min/1.73 m ²		0.60 (0.45–0.80)	-
Dialysis initiated or kidney transplantation		0.74 (0.55–1.00)	-
Renal death		0.39 (0.08–2.03)	_
CV death		0.78 (0.61–1.00)	0.0502
CV death or hospitalization for heart failure	 -	0.69 (0.57–0.83)	<0.001
CV death, MI, or stroke	 -	0.80 (0.67–0.95)	0.01
Hospitalization for heart failure		0.61 (0.47–0.80)	<0.001
ESKD, doubling of serum creatinine, or renal death	 -	0.66 (0.53–0.81)	<0.001
r 0.	2 0. 1. 2	. 4.0	
	Favors ⁰ Favo	rs	
17 th International Congress of Nephrology, Dialysis, and Transplarted Tabriz, Iran, 19-22 November 2019	agliflozin	IPNA MAYO International Society of Rephrolog	Iranian Society of Nephrology

Fig. 2 – Schematic illustration of the already demonstrated and potential beneficial effects of SGLT2 inhibitors. CKD: chronic kidney disease. CV: cardiovascular. CVD: cardiovascular disease. eGFR: estimated glomerular filtration rate. hHF: hospitalisation for heart failure: MACE-3 points: major cardiovascular events (composite of cardiovascular mortality, myocardial infarction, stroke). T2DM: type 2 diabetes mellitus. REF: reduced ejection fraction: PEF: preserved ejection fraction.

Summary

- Canagliflozin reduced the risk of the primary outcome of ESKD, doubling of serum creatinine, or renal or CV death by 30% (P = 0.00001)
 - The results were consistent across a broad range of prespecified subgroups
- Canagliflozin also reduced the risk of the secondary outcome of ESKD, doubling of serum creatinine, or renal death by 34% (P < 0.001)
- Similar risk reductions were seen for exploratory outcomes assessing components of the primary outcome
 - ESKD: 32% lower (95% CI, 14-46)
 - **Dialysis, transplantation, or renal death: 28% lower** (95% Cl, 3–46)
- Canagliflozin attenuated the slope of chronic eGFR decline by 2.7 mL/min/1.73 m²/year (1.9 vs 4.6)

Clinical Kidney Journal, 2019, vol. 12, no. 3, 322–325

doi: 10.1093/ckj/sfz019 Advance Access Publication Date: 6 March 2019 Editorial Comment

EDITORIAL COMMENT

Sodium-glucose cotransporter inhibitors: beyond glycaemic control

Ander Vergara^{1,2}, Conxita Jacobs-Cachá^{1,2,*} and María José Soler^{1,2,*}

¹Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain and ²Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain

- The potential for improving cardio-renal outcomes by sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for
- the EMPA-KIDNEY study.
- Herrington WG, Preiss D, Haynes R et al.
- Clin Kidney J 2018; 11:749–761

Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers.

- Dekkers CCJ, Petrykiv S, Laverman GD et al.
- Dapagliflozin treatment decreases urinary kidney injury molecule 1(u KIM 1)levels.

Diabetes Obes Metab 2018; 20: 1988–1993

Sodium-glucose linked cotransporter-2 inhibition does not attenuate disease progression in the rat remnant kidney model of chronic kidney disease.

• Zhang Y, Thai K, Kepecs DM et al.

• Dapagliflozin did not improve the GFR in the subtotal nephrectomy model of glomerulosclerosis in the rat.

• PLoS One 2016; 11: e0144640

- In a mouse model, luseogliflozin prevented fibrosis after kidney Injury induced by ischaemia–reperfusion.
- Increased expression (VEGF-A) in the kidneys of these animals was also observed.
- . Both the decrease of fibrosis and the VEGF-A overexpression
- were suppressed when luseogliflozin was associated
- with sunitinib—a VEGF receptor inhibitor.
- These results suggest that the protective effects of luseogliflozin
- were in part mediated by the VEGF-A pathway

- Empagliflozin, SGL T2 inhibitor, attenuates renal fibrosis in rats exposed to unilateral ureteric obstruction: potential role of klotho expression.
- Abbas NAT, El Salem A, Awad MM.

• Naunyn Schmiedebergs Arch Pharmacol 2018; 39: 1347–1360

- SGLT2 inhibition decreased kidney fibrosis and inflammation biomarkers, such as (TGF-b1), alpha smooth muscle actin (a-SMA) or fibronectin.
- There is downregulation of the (NF-κB/TLR4) signalling pathway, as well as a partial recovery of tubular
- klotho levels .
- Empagliflozin may have a protective effect against
- inflammation and fibrosis.

• SGLT2 inhibitor dapagliflozinlimits podocyte damage in proteinuric nondiabetic nephropathy.

Cassis P, Locatelli M, Cerullo D et al. JCI Insight 2018; 3: pii: 98720

- In a murine protein-overload proteinuria model, dapagliflozin reduced proteinuria and glomerular damage.
- In the in vivo model and in cultured cells, bovine serum albumin upregulated SGLT2 expression in podocytes in an NFκB-dependent manner.

- . This induced cytoskeleton changes that reverted with the administration of dapagliflozin.
- . Interestingly, SGLT2 inhibition may directly target the podocytes and contribute to maintain the actin cytoskeleton architecture

REVIEW ARTICLE

WILEY

SGLT2 inhibition to address the unmet needs in diabetic nephropathy

Federica Barutta 💿 | Sara Bernardi | Giuseppe Gargiulo | Marilena Durazzo | Gabriella Gruden

Diabetes Metab Res Rev. 2019

FABLE 2 SGLT2 inhibitors in experimental diabetic nephropathy								
Active Treatment	Animal Model	Study Design	Study Duration	Functional and structural effects	Mechanisms			
Empagliflozin ⁸⁴	Type 1 DM (eNOS-KO STZ mice)	Empaglifozin 10 mg/kg/day vs. insulin	19 weeks	= Albuminuria = Glomerulosclerosis = Tubular atrophy				
Empagliflozin ⁸⁵	Type 2 DM (db/db mice)	Empaglifozin 10 mg/kg/day vs. metformin	10 weeks	= Albuminuria = Glomerulosclerosis = Kidney growth	↓ Fibrosis (fibronectin TGF-β)			
Dapaglifozin ⁸⁶	Type 2 DM (OLEFT rats)	Dapaglifozin 1 mg/kg/day vs. voglibose	12 weeks	↓ Albuminuria ↓ Mesangial ↓ Interstitial fibrosis	↓ RAS activation ↓ Oxidative stress ↓ Inflammation			
Dapaglifozin ⁸⁷	Type 1 DM (Akita mice)	Dapaglifozin 1 mg/kg/day vs. insulin	12 weeks	↓ Albuminuria ↓ Interstitial fibrosis	↓ Interstitial inflammation ↓ Fibrosis (TGF-β1) ↓ Oxidative stress			
Dapaglifozin ⁸⁸	Type 2 DM (db/db mice)	Dapaglifozin 2 mg/kg/day vs. pioglitazone	9 weeks	 Albuminuria Mesangial Expansion Foot process width 				
Luseoglifozin ⁸⁹	Type 1 DM and hypertension (STZ-Dahl Salt-sensitive rats)	Luseoglifozin 10 mg/kg/day vs. insulin	8 weeks	= Albuminuria = Hyperfiltration = Renal injury				
Luseoglifozin ⁹⁰	Type 2 DM (T2DN rats)	Luseoglifozin 10 mg/kg food vs. insulin	12 weeks	↓ eGFR decline ↓ Glomerulosclerosis, ↓ Renal fibrosis	\downarrow Nephrin excretion			
Ipraglifozin ⁹¹	Type 2 DM (BTBR ob/ob mice)	Ipraglifozin 4 mg/kg/day vs. 30% calorie restriction	18 weeks	↓ Albuminuria ↓ Hyperfiltration ↓ Mesangial expansion	↓ TCA cycle ↓ Oxidative stress			
/ ^{//} In	ternational Congress of Nep Tabriz , Iran 19-22	hrology, Dialysis, and Transplantation November 2019	Tabric U Media	international and a second sec	(ISN) Carl Society of Nephrology			

• As not all of the non diabetic CKD animal models responded to SGLT2 inhibitors , it is possible that the direct effects on the kidney are dependent on the specific CKD experimental model studied.

TABLE 3 Major ongoing SGLT2 inhibitor trials with renal outcomes

Study Name	EMPA- KIDNEY	CREDENCE	DAPA- CKD	VERTIS CV
Registration number	NCT03594110	NCT02065791	NCT03036150	NCT01986881
Intervention	Empaglifozin vs. placebo	Canaglifozin 100 mg vs. placebo	Dapaglifozin 5 and 10 mg vs. placebo	Ertuglifozin 5 and 15 mg vs. placebo
No. of patients	5000 (estimated)	4401	4000 (estimated)	8000 (estimated)
Study population	DM2 and non-DM2 with CKD	DM2 with CKD and high CV risk	DM2 and non-DM2 with CKD and high CV risk	DM2 with CVD
Renal inclusion criteria	eGFR 20-44 mL/min/1.73m ² or eGFR < 90 mL/min/1.73m ² with UACR \geq 200 mg/g	eGFR 30-90 mL/min/1.73m ² with UACR 300-5000 mg/g	eGFR 25-75 mL/min/1.73m ² with UACR 200-5000 mg/g	eGFR \geq 30 mL/min/1.73m ²
Estimated FU duration	3.1 y	5.5 y	4 y	6.1 y
Primary composite outcomes	$\label{eq:ckd} \begin{array}{l} \mbox{CKD progression (}\downarrow \geq 40\% \mbox{ eGFR, ESRD}^a, \\ \mbox{ eGFR <10 mL/min/1.73m}^2, \mbox{ renal death}) \\ \mbox{ or CV death} \end{array}$	$ESRD^b, dSCr, or\ CV$ or renal death	$ESRD^b, \downarrow \geq 50\% \; eGFR$ or CV or renal death	MACE
Secondary renal outcomes	CKD progression, CV death or ESRD	Renal composite outcome (ESRD ^b , dSCr, or renal death)	Individual components of the primary outcome	Renal composite outcome (dSCr, RRT, or renal death)
Estimated completion date	June 2022	June 2019 ^c	November 2020	September 2019

^aESRD initiation of maintenance dialysis or receipt of a kidney transplant.

^bESRD initiation of maintenance dialysis or receipt of a kidney transplant or sustained <15 mL/min/1.73 m².

The trial was stopped study early on July 2018 based on the achievement of pre-specified efficacy criteria for the primary composite.

Abbreviations: CKD, chronic kidney disease; CV, cardiovascular; CVD, cardiovascular disease; DM2, type 2 diabetes; dSCr, doubling of serum creatinine from baseline; eGFR, estimated glomerular filtration rate; ESRD; end-stage renal disease; FU, follow-up; MACE, major advanced cardiovascular events; UACR, urinary albumin excretion. EMPA-KIDNEY, The Study of Heart and Kidney Protection With Empagliflozin; CREDENCE, Evaluation of the Effects of Canagliflozin on Renal and Cardiovascular Outcomes in Participants With Diabetic Nephropathy; DAPA-CKD, A Study to Evaluate the Effect of Dapagliflozin on Renal Outcomes and Cardiovascular Mortality in Patients With Chronic Kidney Disease; VERTIS CV, Cardiovascular Outcomes Following Ertugliflozin Treatment in Type 2 Diabetes Mellitus Participants With Vascular

Thank you for your attention

Effects on uric acid, phosphate, PTH and vitamin D levels

• SGLT2i increase the renal clearance of uric acid .

• The uricosuric effect is due to the increased intraluminal concentration of glucose and is mediated by GLUT9 isoform 2 in the renal collecting ducts.

Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: A systematic review with an indirect comparison meta-analysis

Yakai Xin^a, Yu Guo^{a,1}, Yanle Li^{d,1}, Yujin Ma^{a,b}, Liping Li^{a,b}, Hongwei Jiang^{a,b,c,*}

	Experimental		Control		Mean Difference		Mean Difference					
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl		IV, Rando	m, 95% Cl	
2.1.1 D APA 5mg												
Bailey, C. J. 2012	-43.42	7.17	68	-4.76	7.13	68	7.1%	-38.66 [-41.06, -36.26]	-			
Bailey, C. J. 2013	-46.4	64.4	137	-1.78	54.13	137	5.3%	-44.62 [-58.71, -30.53]				
Ferrannini, E. 2010	-50.6	6.1	64	-11.9	5.6	75	7.1%	-38.70 [-40.66, -36.74]	-			
Ji, L. 2014	-42.23	5.35	128	-2.38	6.54	132	7.1%	-39.85 [-41.30, -38.40]	~			
Kohan, D. E. 2014	-39.85	14.87	83	-9.52	14.87	84	6.9%	-30.33 [-34.84, -25.82]				
Schumm-Draeger, P. M.2015	-39.26	6.33	99	8.33	4.39	101	7.1%	-47.59 [-49.10, -46.08]	-			
Wilding, J. P. 2012	-12.49	61.8	211	4.16	59.08	193	5.8%	-16.65 [-28.44, -4.86]		<u> </u>		
Subtotal (95% CI)			790			790	46.4%	-37.81 [-42.29, -33.33]		•		
Heterogeneity: Tau ² = 28.85; C	hi² = 121.	26, df =	6 (P <	0.0000	1); l ² = 9	95%						
Test for overall effect: Z = 16.54	4 (P < 0.0	0001)										
2.1.2 DAPA 10mg												
Bailey, C. J. 2013	-52.9	64.4	135	-1.78	54.13	137	5.3%	-51.12 [-65.27, -36.97]				
Bolinder, J. 2012	-70.2	5.9	89	-8.3	5.1	91	7.1%	-61.90 [-63.51, -60.29]	~			
Ferrannini, E. 2010	-51.7	5.8	70	-11.9	5.6	75	7.1%	-39.80 [-41.66, -37.94]	*			
Ji, L. 2014	-24.98	5.95	133	-2.38	6.54	132	7.1%	-22.60 [-24.11, -21.09]		*		
Kohan, D. E. 2014	-23.2	11.9	85	-9.52	14.87	84	7.0%	-13.68 [-17.74, -9.62]				
Schumm-Draeger, P. M. 2015	-48.18	6.16	99	8.33	4.39	101	7.1%	-56.51 [-58.00, -55.02]	~			
Strojek, K. 2014	-26.17	4.66	151	20.22	5.51	145	7.1%	-46.39 [-47.55, -45.23]	-			
Wilding, J. P. 2012	-14.28	63	194	4.16	59.08	193	5.7%	-18.44 [-30.61, -6.27]				
Subtotal (95% CI)			956			958	53.6%	-38.93 [-50.03, -27.83]				
Heterogeneity: Tau ² = 245.87; (Chř = 178	84.83, c	f = 7 (F	P ≤ 0.00	001); I ²	= 100%	6					
Test for overall effect: Z = 6.87	(P < 0.00	1001)										
Total (95% CI)			1746			1748	100.0%	-38.05 [-44.47, -31.62]	-	•		
Heterogeneity: Tau ² = 150.38; (Chr = 19	41.95, 0	f = 14	(P < 0.0)	0001); P	² = 99%				+	±	+
Test for overall effect: Z = 11.60) (P < 0.0	0001)		**					-50	-25 l	J 25	50
Test for subaroup differences: (Chi ^z = 0.0	3. df = '	1 (P = ().85), I ^z	= 0%				Pavours	experimental	r avours (control)	